Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2801, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589701

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Glutamina/metabolismo , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Linfócitos T/metabolismo
2.
Mol Cancer Ther ; 20(10): 1809-1819, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253595

RESUMO

Dual bromodomain BET inhibitors that bind with similar affinities to the first and second bromodomains across BRD2, BRD3, BRD4, and BRDT have displayed modest activity as monotherapy in clinical trials. Thrombocytopenia, closely followed by symptoms characteristic of gastrointestinal toxicity, have presented as dose-limiting adverse events that may have prevented escalation to higher dose levels required for more robust efficacy. ABBV-744 is a highly selective inhibitor for the second bromodomain of the four BET family proteins. In contrast to the broad antiproliferative activities observed with dual bromodomain BET inhibitors, ABBV-744 displayed significant antiproliferative activities largely although not exclusively in cancer cell lines derived from acute myeloid leukemia and androgen receptor positive prostate cancer. Studies in acute myeloid leukemia xenograft models demonstrated antitumor efficacy for ABBV-744 that was comparable with the pan-BET inhibitor ABBV-075 but with an improved therapeutic index. Enhanced antitumor efficacy was also observed with the combination of ABBV-744 and the BCL-2 inhibitor, venetoclax compared with monotherapies of either agent alone. These results collectively support the clinical evaluation of ABBV-744 in AML (Clinical Trials.gov identifier: NCT03360006).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Piridinas/farmacologia , Pirróis/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cells ; 9(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429478

RESUMO

In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation.


Assuntos
Antioxidantes/metabolismo , Ceramidas/farmacologia , Metabolismo Energético , Homeostase , Lipidômica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colina , Dieta , Diglicerídeos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Comportamento Alimentar , Células-Tronco Hematopoéticas/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Lipossomos , Masculino , Metionina/deficiência , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatidilcolinas/metabolismo , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Mol Cancer Ther ; 18(11): 1937-1946, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31387889

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematopoietic disease characterized by glutamine-dependent metabolism. A novel glutaminase (GLS) inhibitor, CB-839, is currently under evaluation for treatment of hematopoietic malignancies and solid tumors. Our purpose was to measure cellular changes in AML associated with CB-839 treatment and to test the ability of hyperpolarized pyruvate for interrogating these changes to OCI-AML3 cells. Our results show that treatment with CB-839 interfered with the citric acid cycle, reduced the NADH/NAD+ ratio and ATP levels, reduced cell proliferation and viability, and reduced the basal and maximal respiratory capacities [oxygen consumption rate (OCR)]. We observed a reduction of the conversion of hyperpolarized pyruvate to lactate in cell lines and in a mouse AML model after CB-839 treatment. Our in vitro and in vivo results support the hypothesis that, in AML, glutamine is utilized to generate reducing equivalents (NADH, FADH2) through the citric acid cycle and that reduction in redox state by GLS inhibition decreases the rate of pyruvate to lactate conversion catalyzed by lactate dehydrogenase. We propose hyperpolarized pyruvate/lactate measurement as a method for direct monitoring of metabolic changes occurring in AML patients receiving CB-839. With further optimization, this method may provide a noninvasive imaging tool to assess the early efficacy of therapeutic intervention with GLS inhibitors.


Assuntos
Benzenoacetamidas/administração & dosagem , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/diagnóstico por imagem , Leucemia Mieloide Aguda/tratamento farmacológico , Ácido Pirúvico/metabolismo , Tiadiazóis/administração & dosagem , Animais , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Tiadiazóis/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Imaging Biol ; 21(1): 86-94, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29748904

RESUMO

PURPOSE: Androgen receptor (AR) signaling affects prostate cancer (PCa) growth, metabolism, and progression. Often, PCa progresses from androgen-sensitive to castration-resistant prostate cancer (CRPC) following androgen-deprivation therapy. Clinicopathologic and genomic characterizations of CRPC tumors lead to subdividing CRPC into two subtypes: (1) AR-dependent CRPC containing dysregulation of AR signaling alterations in AR such as amplification, point mutations, and/or generation of splice variants in the AR gene; and (2) an aggressive variant PCa (AVPC) subtype that is phenotypically similar to small cell prostate cancer and is defined by chemotherapy sensitivity, gain of neuroendocrine or pro-neural marker expression, loss of AR expression, and combined alterations of PTEN, TP53, and RB1 tumor suppressors. Previously, we reported patient-derived xenograft (PDX) animal models that contain characteristics of these CRPC subtypes. In this study, we have employed the PDX models to test metabolic alterations in the CRPC subtypes. PROCEDURES: Mass spectrometry and nuclear magnetic resonance analysis along with in vivo hyperpolarized 1-[13C]pyruvate spectroscopy experiments were performed on prostate PDX animal models. RESULTS: Using hyperpolarized 1-[13C]pyruvate conversion to 1-[13C]lactate in vivo as well as lactate measurements ex vivo, we have found increased lactate production in AR-dependent CRPC PDX models even under low-hormone levels (castrated mouse) compared to AR-negative AVPC PDX models. CONCLUSIONS: Our analysis underscores the potential of hyperpolarized metabolic imaging in determining the underlying biology and in vivo phenotyping of CRPC.


Assuntos
Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Ácido Pirúvico/metabolismo , Receptores Androgênicos/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Xenoenxertos , Humanos , Aumento da Imagem/métodos , Ácido Láctico/análise , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica , Próstata/química , Próstata/diagnóstico por imagem , Próstata/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Ácido Pirúvico/análise , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
7.
Int J Biopharm Sci ; 1(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29607443

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological malignancy with high incidence in the aging population. In addition, AML is one of the more common pediatric malignancies. Unfortunately, both of these patient groups are quite sensitive to chemotherapy toxicities. Investigation of blueberries specifically as an anti-AML agent has been limited, despite being a prominent natural product with no reported toxicity. In this study, blueberry extracts are reported for the first time to exert a dietary therapeutic effect in animal models of AML. Furthermore, in vitro studies revealed that blueberry extracts exerted anti-AML efficacy against myeloid leukemia cell lines as well as against primary AML, and specifically provoked Erk and Akt regulation within the leukemia stem cell subpopulation. This study provides evidence that blueberries may be unique sources for anti-AML biopharmaceutical compound discovery, further warranting fractionation of this natural product. More so, blueberries themselves may provide an intriguing dietary option to enhance the anti-AML efficacy of traditional therapy for subsets of patients that otherwise may not tolerate rigorous combinations of therapeutics.

8.
Sci Rep ; 7(1): 16159, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170516

RESUMO

The new oncologic paradigm of precision medicine is focused on identifying metabolic, proteomic, transcriptomic and genomic variabilities in tumors that can be exploited to tailor treatments and improve patient outcomes. Metabolic changes are a hallmark of cancer, and inhibition of metabolic pathways is now a major strategy in medicinal chemistry for targeting cancers. However, non-invasive biomarkers to categorize metabolic subtypes are in short supply. The purpose of this study was to characterize the intracellular and extracellular metabolic profiles of four prostate cancer cell lines with varying degrees of aggressiveness. We observed metabolic differences between the aggressive prostate cancer cell line PC3 and the even more aggressive, metastatic subline PC3M assessed by hyperpolarized in vivo pyruvate studies, nuclear magnetic resonance spectroscopy, and carbon-13 feeding studies. On further examination of the differences between these two cell lines, we found increased glutamine utilization in the metastatic PC3M subline that led directly to sensitivity to glutaminase inhibitor CB-839. Our study supports the theory that metastatic progression increases glutamine utilization and the inhibition of glutaminolysis could have clinical implications.


Assuntos
Glutamina/metabolismo , Neoplasias da Próstata/metabolismo , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Humanos , Masculino , Ressonância Magnética Nuclear Biomolecular , Tiadiazóis/farmacologia
9.
J Leuk (Los Angel) ; 2(3)2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28239612

RESUMO

Acute Myeloid Leukemia (AML) is a highly heterogeneous and poor prognosis disease with few available therapeutic options. Novel advances are urgently needed, however effective models to test experimental therapeutics have been lacking. Recently, NOD/SCID/IL2rγnull (NSG) mice were shown to engraft primary human AML in a manner that recapitulated the natural disease and its progression. Additionally, integrated genomic profiling was used to refine risk stratification of AML. In this study, we demonstrated the engraftment of molecularly defined primary AML in NSG mice. We showed that AML that express DNMT3A mutations, which predict for adverse outcome, engrafted with exceptional efficacy. Lastly, we demonstrated that human AML-engrafted NSG mice can be effectively used to study novel ceramide-based therapeutics. Ceramide is a bioactive sphingolipid that has been implicated as an inducer of apoptosis. Elevation in cancer cell ceramide levels either via exogenous delivery or by provoking intracellular ceramide generation is the goal of ceramide-based therapeutics. In this study, we used the human AML-engrafted NSG mouse model to evaluate nanoliposomal short-chain C6-ceramide and a nanoliposomal formulation of the ceramide-inducer tamoxifen. Altogether, the NSG model is likely to prove invaluable in the study of novel agents, sushc as ceramide-based therapeutics, with the ability to define therapeutic activity against specific molecularly defined and risk stratified AML.

10.
PLoS One ; 8(12): e84648, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367685

RESUMO

Ceramide is a sphingolipid metabolite that induces cancer cell death. When C6-ceramide is encapsulated in a nanoliposome bilayer formulation, cell death is selectively induced in tumor models. However, the mechanism underlying this selectivity is unknown. As most tumors exhibit a preferential switch to glycolysis, as described in the "Warburg effect", we hypothesize that ceramide nanoliposomes selectively target this glycolytic pathway in cancer. We utilize chronic lymphocytic leukemia (CLL) as a cancer model, which has an increased dependency on glycolysis. In CLL cells, we demonstrate that C6-ceramide nanoliposomes, but not control nanoliposomes, induce caspase 3/7-independent necrotic cell death. Nanoliposomal ceramide inhibits both the RNA and protein expression of GAPDH, an enzyme in the glycolytic pathway, which is overexpressed in CLL. To confirm that ceramide targets GAPDH, we demonstrate that downregulation of GAPDH potentiates the decrease in ATP after ceramide treatment and exogenous pyruvate treatment as well as GAPDH overexpression partially rescues ceramide-induced necrosis. Finally, an in vivo murine model of CLL shows that nanoliposomal C6-ceramide treatment elicits tumor regression, concomitant with GAPDH downregulation. We conclude that selective inhibition of the glycolytic pathway in CLL cells with nanoliposomal C6-ceramide could potentially be an effective therapy for leukemia by targeting the Warburg effect.


Assuntos
Morte Celular/fisiologia , Ceramidas/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Lipossomos/metabolismo , Nanopartículas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Ceramidas/farmacologia , Primers do DNA/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Marcação In Situ das Extremidades Cortadas , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Lipossomos/farmacologia , Camundongos , Microscopia de Contraste de Fase , Reação em Cadeia da Polimerase em Tempo Real
11.
Cancer Lett ; 337(2): 254-65, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23664889

RESUMO

Autophagy, a catabolic survival pathway, is gaining attention as a potential target in cancer. In human liver and colon cancer cells, treatment with an autophagy inducer, nanoliposomal C6-ceramide, in combination with the autophagy maturation inhibitor, vinblastine, synergistically enhanced apoptotic cell death. Combination treatment resulted in a marked increase in autophagic vacuole accumulation and decreased autophagy maturation, without diminution of the autophagy flux protein P62. In a colon cancer xenograft model, a single intravenous injection of the drug combination significantly decreased tumor growth in comparison to the individual treatments. Most importantly, the combination treatment did not result in increased toxicity as assessed by body weight loss. The mechanism of combination treatment-induced cell death both in vitro and in vivo appeared to be apoptosis. Supportive of autophagy flux blockade as the underlying synergy mechanism, treatment with other autophagy maturation inhibitors, but not autophagy initiation inhibitors, were similarly synergistic with C6-ceramide. Additionally, knockout of the autophagy protein Beclin-1 suppressed combination treatment-induced apoptosis in vitro. In conclusion, in vitro and in vivo data support a synergistic antitumor activity of the nanoliposomal C6-ceramide and vinblastine combination, potentially mediated by an autophagy mechanism.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/administração & dosagem , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Hep G2 , Humanos , Injeções Intravenosas , Lipossomos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Nanopartículas , Interferência de RNA , Proteína Sequestossoma-1 , Transfecção , Carga Tumoral/efeitos dos fármacos , Vimblastina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Crit Rev Oncog ; 18(3): 221-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23510065

RESUMO

Gaucher's disease is a sphingolipidosis characterized by a specific deficiency in an acidic glucocerebrosidase, which results in aberrant accumulation of glucosylceramide primarily within the lysosome. Gaucher's disease has been correlated with cases of myeloma, leukemia, glioblastoma, lung cancer, and hepatocellular carcinoma, although the reasons for the correlation are currently being debated. Some suggest that the effects of Gaucher's disease may be linked to cancer, while others implicate the therapies used to treat Gaucher's disease. This debate is not entirely surprising, as the speculations linking Gaucher's disease with cancer fail to address the roles of ceramide and glucosylceramide in cancer biology. In this review, we will discuss, in the context of cancer biology, ceramide metabolism to glucosylceramide, the roles of glucosylceramide in multidrug-resistance, and the role of ceramide as an anticancer lipid. This review should reveal that it is most practical to associate elevated glucosylceramide, which accompanies Gaucher's disease, with the progression of cancer. Furthermore, this review proposes that the therapies used to treat Gaucher's disease, which augment ceramide accumulation, are likely not linked to correlations with cancer.


Assuntos
Doença de Gaucher/complicações , Doença de Gaucher/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
13.
ACS Nano ; 7(3): 2132-44, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23373542

RESUMO

Tumor-associated inflammation mediates the development of a systemic immunosuppressive milieu that is a major obstacle to effective treatment of cancer. Inflammation has been shown to promote the systemic expansion of immature myeloid cells which have been shown to exert immunosuppressive activity in laboratory models of cancer as well as cancer patients. Consequentially, significant effort is underway toward the development of therapies that decrease tumor-associated inflammation and immunosuppressive cells. The current study demonstrated that a previously described deep tissue imaging modality, which utilized indocyanine green-loaded calcium phosphosilicate nanoparticles (ICG-CPSNPs), could be utilized as an immunoregulatory agent. The theranostic application of ICG-CPSNPs as photosensitizers for photodynamic therapy was shown to block tumor growth in murine models of breast cancer, pancreatic cancer, and metastatic osteosarcoma by decreasing inflammation-expanded immature myeloid cells. Therefore, this therapeutic modality was termed PhotoImmunoNanoTherapy. As phosphorylated sphingolipid metabolites have been shown to have immunomodulatory roles, it was hypothesized that the reduction of immature myeloid cells by PhotoImmunoNanoTherapy was dependent upon bioactive sphingolipids. Mechanistically, PhotoImmunoNanoTherapy induced a sphingosine kinase 2-dependent increase in sphingosine-1-phosphate and dihydrosphingosine-1-phosphate. Furthermore, dihydrosphingosine-1-phosphate was shown to selectively abrogate myeloid lineage cells while concomitantly allowing the expansion of lymphocytes that exerted an antitumor effect. Collectively, these findings revealed that PhotoImmunoNanoTherapy, utilizing the novel nontoxic theranostic agent ICG-CPSNP, can decrease tumor-associated inflammation and immature myeloid cells in a sphingosine kinase 2-dependent manner. These findings further defined a novel myeloid regulatory role for dihydrosphingosine-1-phosphate. PhotoImmunoNanoTherapy holds the potential to be a revolutionary treatment for cancers with inflammatory and immunosuppressive phenotypes.


Assuntos
Imunoterapia/métodos , Nanopartículas/uso terapêutico , Neoplasias Experimentais/terapia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotoquimioterapia/métodos , Esfingosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Verde de Indocianina/administração & dosagem , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Nus , Células Mieloides/imunologia , Células Mieloides/metabolismo , Nanopartículas/química , Nanotecnologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Silicatos/química , Esfingosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochem Pharmacol ; 85(8): 1057-65, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23353700

RESUMO

Poor prognosis in patients with later stage colorectal cancer (CRC) necessitates the search for new treatment strategies. Ceramide, because of its role in orchestrating death cascades in cancer cells, is a versatile alternative. Ceramide can be generated by exposure to chemotherapy or ionizing radiation, or it can be administered in the form of short-chain analogs (C6-ceramide). Because intracellular P-glycoprotein (P-gp) plays a role in catalyzing the conversion of ceramide to higher sphingolipids, we hypothesized that administration of P-gp antagonists with C6-ceramide would magnify cell death cascades. Human CRC cell lines were employed, HCT-15, HT-29, and LoVo. The addition of either tamoxifen, VX-710, verapamil, or cyclosporin A, antagonists of P-gp, enhanced C6-ceramide cytotoxicity in all cell lines. In depth studies with C6-ceramide and tamoxifen in LoVo cells showed the regimen induced PARP cleavage, caspase-dependent apoptosis, mitochondrial membrane permeabilization (MMP), and cell cycle arrest at G1 and G2. At the molecular level, the regimen, but not single agents, induced time-dependent upregulation of tumor suppressor protein p53; however, introduction of a p53 inhibitor staved neither MMP nor apoptosis. Nanoliposomal formulations of C6-ceramide and tamoxifen were also effective, yielding synergistic cell kill. We conclude that tamoxifen is a favorable adjuvant for enhancing C6-ceramide cytotoxicity in CRC, and demonstrates uniquely integrated effects. The high frequency of expression of P-gp in CRC presents an adventitious target for complementing ceramide-based therapies, a strategy that could hold promise for treatment of resistant disease.


Assuntos
Antineoplásicos Hormonais/farmacologia , Ceramidas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Proteína Supressora de Tumor p53/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Sinergismo Farmacológico , Humanos , Piperidinas/farmacologia , Piridinas/farmacologia , Tamoxifeno/farmacologia
15.
Nanomedicine ; 9(1): 130-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22465498

RESUMO

Nanoliposomal technology is a promising drug delivery system that could be employed to improve the pharmacokinetic properties of clearance and distribution in ocular drug delivery to the retina. We developed a nanoscale version of an anionic, cholesterol-fusing liposome that can encapsulate therapeutic levels of minocycline capable of drug delivery. We demonstrate that size extrusion followed by size-exclusion chromatography can form a stable 80-nm liposome that encapsulates minocycline at a concentration of 450 ± 30 µM, which is 2% to 3% of loading material. More importantly, these nontoxic nanoliposomes can then deliver 40% of encapsulated minocycline to the retina after a subconjunctival injection in the STZ model of diabetes. Efficacy of therapeutic drug delivery was assessed via transcriptomic and proteomic biomarker panels. For both the free minocycline and encapsulated minocycline treatments, proinflammatory markers of diabetes were downregulated at both the messenger RNA and protein levels, validating the utility of biomarker panels for the assessment of ocular drug delivery vehicles. FROM THE CLINICAL EDITOR: Authors developed a nano-liposome that can encapsulate minocycline for optimized intraocular drug delivery. These nontoxic nanoliposomes delivered 40% of encapsulated minocycline to the retina after a subconjunctival injection in a diabetes model.


Assuntos
Antibacterianos/administração & dosagem , Lipossomos , Minociclina/administração & dosagem , Nanotecnologia , Administração Oftálmica , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase , Ratos
16.
Leuk Lymphoma ; 54(6): 1288-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23181473

RESUMO

Abstract Natural killer (NK) cell leukemia is characterized by clonal expansion of CD3 - NK cells and comprises both chronic and aggressive forms. Currently no effective treatment exists, thus providing a need for identification of novel therapeutics. Lipidomic studies revealed a dysregulated sphingolipid metabolism as evidenced by decreased levels of overall ceramide species and increased levels of cerebrosides in leukemic NK cells, concomitant with increased glucosylceramide synthase (GCS) expression. GCS, a key enzyme of this pathway, neutralizes pro-apoptotic ceramide by transfer of a uridine diphosphate (UDP)-glucose. Thus, we treated both rat and human leukemic NK cells in combination with: (1) exogenous C6-ceramide nanoliposomes in order to target mitochondria and increase physiological pro-apoptotic levels of long chain ceramide, and (2) 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of GCS. Co-administration of C6-ceramide nanoliposomes and PPMP elicited an increase in endogenous long-chain ceramide species, which led to cellular apoptosis in a synergistic manner via the mitochondrial intrinsic cell death pathway in leukemic NK cells.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Ceramidas/administração & dosagem , Glucosiltransferases/metabolismo , Leucemia Linfocítica Granular Grande/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Linfocítica Granular Grande/genética , Lipossomos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Morfolinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/farmacologia , Survivina
17.
Mol Cancer Ther ; 11(11): 2352-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22962326

RESUMO

Although the sphingolipid ceramide exhibits potent tumor suppressor effects, efforts to harness this have been hampered by poor solubility, uptake, bioavailability, and metabolic conversion. Therefore, identification of avenues to improve efficacy is necessary for development of ceramide-based therapies. In this study, we used mutant p53, triple-negative breast cancer (TNBC) cells, a type of breast cancer highly refractory to treatment, and cell-permeable nanoliposomal C6-ceramide in conjunction with the antiestrogen tamoxifen, which has been shown to be an effective modulator of ceramide metabolism. We show for the first time that nanoliposomal tamoxifen enhances nanoliposomal C6-ceramide cytotoxicity in cultured TNBC cells, a response that was accompanied by induction of cell-cycle arrest at G(1) and G(2), caspase-dependent induction of DNA fragmentation, and enhanced mitochondrial and lysosomal membrane permeability at 18 and 2 hours, respectively. Tamoxifen metabolites were also effective. Only tamoxifen promoted lysosomal membrane permeability. In addition, we show for the first time that tamoxifen inhibits acid ceramidase, as measured in intact cell assays; this effect was irreversible. Together, our findings show that tamoxifen magnifies the antiproliferative effects of C6-ceramide via combined targeting of cell-cycle traverse and lysosomal and mitochondrial integrity. We adduce that C6-ceramide-induced apoptosis is amplified by tamoxifen's impact on lysosomes and perhaps accompanying inhibition of acid ceramidase, which could result in decreased levels of sphingosine 1-phosphate. This drug regimen could serve as a promising therapy for chemoresistant and triple-negative types of breast cancer, and thus represents an indication for tamoxifen, irrespective of estrogen receptor status.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ceramidas/uso terapêutico , Moduladores de Receptor Estrogênico/uso terapêutico , Lipossomos/química , Nanopartículas/química , Amidas/farmacologia , Amidas/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/uso terapêutico , Feminino , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
18.
Discov Med ; 13(71): 275-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22541615

RESUMO

Photodynamic therapy (PDT) has emerged as an alternative modality for cancer treatment. PDT works by initiating damaging oxidation or redox-sensitive pathways to trigger cell death. PDT can also regulate tumor angiogenesis and modulate systemic antitumor immunity. The drawbacks to PDT--photosensitizer toxicity, a lack of selectivity and efficacy of photosensitizers, and a limited penetrance of light through deep tissues--are the same pitfalls associated with diagnostic imaging. Developments in the field of nanotechnology have generated novel platforms for optimizing the advantages while minimizing the disadvantages of PDT. Calcium phosphosilicate nanoparticles (CPSNPs) represent an optimal nano-system for both diagnostic imaging and PDT. In this review, we will discuss how CPSNPs can enhance optical agents and serve as selective, non-toxic, and functionally stable photosensitizers for PDT. We will also examine novel applications of CPSNPs and PDT for the treatment of leukemia to illustrate their potential utility in cancer therapeutics.


Assuntos
Nanopartículas/efeitos adversos , Nanopartículas/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/química , Humanos , Nanotecnologia/métodos
19.
Cancer Biol Ther ; 12(7): 574-85, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21795855

RESUMO

Poor prognosis cancers, such as pancreatic cancer, represent inherent challenges for ceramide-based nanotherapeutics due to metabolic pathways, which neutralize ceramide to less toxic or pro-oncogenic metabolites. We have recently developed a novel 80 nanometer diameter liposomal formulation that incorporates 30 molar percent C6-ceramide, a bioactive lipid that is pro-apoptotic to many cancer cells, but not to normal cells. In this manuscript, we evaluated the efficacy of combining nanoliposomal C6-ceramide (Lip-C6) with either gemcitabine or an inhibitor of glucosylceramide synthase. We first assessed the biological effect of Lip-C6 in PANC-1 cells, a gemcitabine-resistant human pancreatic cancer cell line, and found that low doses alone did not induce cell toxicity. However, cytotoxicity was achieved by combining Lip-C6 with either non-toxic sub-therapeutic concentrations of gemcitabine or with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Furthermore, these combinations with Lip-C6 cooperatively inhibited PANC-1 tumor growth in vivo. Mechanistically, Lip-C6 inhibited pro-survival Akt and Erk signaling, whereas the nucleoside analog gemcitabine did not. Furthermore, by including PDMP within the nanoliposomes, which halted ceramide neutralization as evidenced by LC-MS3, the cytotoxic effects of Lip-C6 were enhanced. Collectively, we have demonstrated that nanoliposomal ceramide can be an effective anti-pancreatic cancer therapeutic in combination with gemcitabine or an inhibitor of ceramide neutralization.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ceramidas/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linhagem Celular Tumoral , Ceramidas/administração & dosagem , Ceramidas/farmacocinética , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Glucosiltransferases/antagonistas & inibidores , Humanos , Lipossomos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
20.
ACS Nano ; 5(7): 5325-37, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21675727

RESUMO

Leukemia is one of the most common and aggressive adult cancers, as well as the most prevalent childhood cancer. Leukemia is a cancer of the hematological system and can be divided into a diversity of unique malignancies based on the onset of the disease as well as the specific cell lineages involved. Cancer stem cells, including recently identified leukemia stem cells (LSCs), are hypothesized to be responsible for cancer development, relapse, and resistance to treatment, and new therapeutics targeting these cellular populations are urgently needed. Nontoxic and nonaggregating calcium phosphosilicate nanoparticles (CPSNPs) encapsulating the near-infrared fluoroprobe indocyanine green (ICG) were recently developed for diagnostic imaging and drug delivery as well as for photodynamic therapy (PDT) of solid tumors. Prior studies revealed that specific targeting of CPSNPs allowed for enhanced accumulation within breast cancer tumors, via CD71 targeting, or pancreatic cancer tumors, via gastrin receptor targeting. In the present study, ICG-loaded CPSNPs were evaluated as photosensitizers for PDT of leukemia. Using a novel bioconjugation approach to specifically target CD117 or CD96, surface features enhanced on leukemia stem cells, in vitro ICG-CPSNP PDT of a murine leukemia cell line and human leukemia samples were dramatically improved. Furthermore, the in vivo efficacy of PDT was dramatically enhanced in a murine leukemia model by utilizing CD117-targeted ICG-CPSNPs, resulting in 29% disease-free survival. Altogether, this study demonstrates that leukemia-targeted ICG-loaded CPSNPs offer the promise to effectively treat relapsing and multidrug-resistant leukemia and to improve the life of leukemia patients.


Assuntos
Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/uso terapêutico , Verde de Indocianina/química , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Terapia de Alvo Molecular/métodos , Fotoquimioterapia/métodos , Silicatos/metabolismo , Silicatos/uso terapêutico , Animais , Biomarcadores Tumorais/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Endocitose , Feminino , Humanos , Leucemia/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo , Reprodutibilidade dos Testes , Silicatos/química , Silicatos/farmacologia , Oxigênio Singlete/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...